
 

 

  
Abstract—In this paper, the uncovered interest rate parity (UIP) 

assumption, using a well-known 3D chaotic dynamical system, which 
describes the variations of the interest rate, is studied. More 
specifically a 4D novel hyperchaotic financial system is proposed by 
introducing the exchange rate, due to the fact that the difference in 
interest rates between two countries is equal to the relative change in 
currency foreign exchange rates over the same period. The novel 4D 
financial dynamical system is investigated in two different cases with 
and without a base interest rate. The system’s hyperchaotic behavior 
and a route to chaos through a crisis phenomenon and quasiperiodic 
behavior are observed through the simulation results.  
 

Keywords—Econophysics, exchange rate, hyperchaotic finance 
system, interest rate.  

I. INTRODUCTION 
N the last decades, there has been an increasing interest in 
nonlinear dynamical systems, which exhibit chaotic 
behavior, from researchers of many kinds of scientific fields 

[1]-[3]. Chaos theory has started, when Lorenz in 1963 
discovered complex dynamics, while studying three nonlinear 
differential equations that led to turbulence in the weather 
system [4]. The main feature of chaotic systems is their great 
sensitivity to initial conditions, which means that a small 
change or perturbation may result in very different future 
behavior. Since the early 1980s, chaotic behavior has also 
been observed in economics [5]. It is well known that financial 
systems are complex nonlinear systems that interact with 
humans and contain many complicated factors [6]. 

Therefore, a new scientific field has emerged, which is 
called "Econophysics" and intends to study the dynamics of 
real economic systems. It is actually the science that uses 
models from physics to describe some economic phenomena 
that include uncertainty and nonlinear dynamics. Economic 
processes, which include systems with very large number of 
elements, such as financial or banking markets, stock markets, 
income and production show chaotic behavior and it is very 
difficult to provide effective forecasts [7]. When chaotic 
phenomena occur in a financial system, it means that the 
macroeconomic procedure has indefiniteness, which exists in 
it. Even though governments can enforce financial or monetary 
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policies to intervene, the efficacy of the intervention may be 
very limited. So, it is absolutely necessary to study chaotic 
behaviors and phenomena in economic systems, especially 
during financial crises.  

One of the variables that are very often studied in papers is 
the interest rate, which is the percentage of the amount of 
money lent, charged by the lender for the use of assets [8]. 
Another important variable is the exchange rate that is the rate 
at which one currency will be exchanged for another. It is also 
regarded as the value of one country’s currency in relation to 
foreign currency. Exchange rates are determined in the foreign 
exchange market, which is open to a wide range of different 
types of buyers and sellers, and where currency trading is 
continuous [9], [10]. 

Furthermore, the assumption of uncovered interest parity 
(UIP) is an important building block for macroeconomic 
analysis of open economies [11]. It provides a simple 
relationship between the interest rate on an asset denominated 
in any one country’s currency unit, the interest rate on a 
similar asset denominated in another country’s currency, and 
the expected rate of change in the exchange rate between the 
two currencies. Actually, the theory of UIP postulates that 
market forces drive the forward exchange rate into equality 
with the expected future exchange rate. 

 Thus, in this work, a novel hyperchaotic finance system is 
introduced by adding the state variable of exchange rate to a 
well known third-order chaotic finance system. Hyperchaos 
was studied for the first time by Rössler in 1979 [12] and it 
means that the hyperchaotic system has much more complex 
behavior than a chaotic system. Usually, a hyperchaotic system 
is defined as a chaotic system with at least two positive 
Lyapunov exponents.  

The rest of the paper is organized as follows. In the next 
section the basic features of the new financial system are 
presented. The simulation results of the proposed system and 
its analysis are presented in Section 3. Finally, Section 4 
includes the conclusions of this work. 

II. THE SYSTEM 
In 2001, Ma and Chen reported a third-order dynamical 

model, describing a nonlinear finance system [13]. The model 
describes the time variations of three state variables, the 
interest rate x, the investment demand y, and the price index z. 
This nonlinear finance chaotic system is described by the 
following set of differential equations: 
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Parameters α, b and c stand for: the saving amount, the cost 
per-investment and the elasticity of demand of commercial 
markets, respectively. All three parameters possess a positive 
value (α ≥ 0, b ≥ 0, c ≥ 0). 

Also, the aforementioned finance system has been studied 
by other researchers in the same or in other mathematical 
forms [14]-[22], by extracting interesting results about their 
dynamical behavior. 

From an economic point of view, it is found that the factors 
affecting the interest rate are related not only to investment 
demand and price index, but also to the exchange rates. 
According to uncovered interest rate parity theory [11] the 
difference in interest rates between two countries will equal to 
the relative change in currency foreign exchange rates over the 
same period.  

So, by taking into mind the following equation  
 

*w = x x−                                (2) 
 

where w is the exchange rate, x is the  interest rate and x* is the 
interest rate of a foreign country, system (1) is transformed to 
the following 4D order dynamical system.  
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Furthermore, in the proposed system (3) a term –dw2                

(d ≥ 0) has been added to the second equation due to the fact 
that the rate of change in investment demand is also depended 
on the currency foreign exchange rates. Due to the lack from 
literature of a specific relation between the rate of change in 
investment demand and the currency foreign exchange rates 
the –dw2 function has been adopted in this work.  

The equilibrium points of the novel finance system (3) are 
obtained by solving the following set of equations: 

0,  0,  0,  0x y z w == = =   . So, the system has the two 
equilibrium points:  

 

(x, y, z, w)1 = ( *x , ( )(1 )ad d+ , *x d− , 

( )( )2*b d abd d x cd− + − − ) and  

 

(x, y, z, w)2 = ( *x , ( )(1 )ad d+ , *x d− ,                                         

– ( )( )2*b d abd d x cd− + − − ). 

 
 
 

On the other hand, if parameter *x is equal to zero, by 
considering it as a base interest rate into system (3), then, it is 
proved that the system has a set of infinite number of 
equilibria, as: 
(x, y, z, w) = (0, 21− dk , 0, k), where ∈k R  

So, for *x = 0, system (3) belongs to the new category of 
dynamical systems with hidden attractors [23]. 

Also, it is easy to see that system (3) is invariant under the 
change of coordinates (x, y, z, w) → (−x, y, −z, −w). Thus, it 
follows that the novel nonlinear finance chaotic system (3) has 
rotation symmetry about the y-axis and that any non-trivial 
trajectory must have a twin trajectory. 

III. SIMULATION RESULTS  
In this section, the numerical simulation results of the novel 

finance system (3), in two cases with *x = 0 and  *x  = 0.01, 
by employing the fourth order Runge–Kutta algorithm, are 
presented. In this approach, some of the most well-known 
tools of nonlinear theory, such as the bifurcation diagram, the 
phase portrait, the Poincaré map and the Lyapunov exponents, 
have been used.  

The bifurcation diagram is a very useful tool in nonlinear 
science, because it gives the change of system’s dynamic 
behavior as a crucial variable increases (or decreases) with a 
small step. In more details, this work presents the bifurcation 
diagram of the variable y versus the parameter c, which is 
produced when the trajectory crosses the section plane w = 0 
with dw/dt < 0. With this procedure a discrete number of 
points are produced for periodic behavior, while an infinite 
number of points are produced for a chaotic behavior. If we 
follow the aforementioned procedure for a specific value of c a 
Poincaré map is produced. 

Another, useful tool, which is very common in the works 
related with nonlinear science, is the system’s phase portrait, 
which is a geometric representation of the trajectories of a 
dynamical system in various phase planes. When the system is 
in a periodic state a closed curve is produced in the phase 
portrait, while when the system is in a chaotic state a more 
complex phase portrait is produced.  

Furthermore, in mathematics the Lyapunov exponents of a 
dynamical system, which are also used in this work, are the 
quantities that characterize the rate of separation of 
infinitesimally close trajectories. It is common to refer to the 
largest one as the Maximal Lyapunov exponent (MLE), 
because it determines a notion of predictability for a dynamical 
system. A positive MLE is usually taken as an indication that 
the system is chaotic, while when MLE is equal to zero the 
system is in a periodic state. Furthermore, if the system has 
two positive Lyapunov exponents the system is hyperchaotic. 
In this paper, the system’s Lyapunov exponents have been 
calculated by employing the Wolf et al. algorithm [24]. 
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A.  First Case (x* = 0) 
In the first case, system’s (3) behavior for *x = 0, while the 

rest of parameters are: a = 0.1, b = 0.3, d = 0.01 and the initial 
conditions (x0, y0, z0, w0) = (1, 0.5, 0.5, 0.1), is investigated. 
By taking the bifurcation diagram of y versus the parameter c 
(Fig.1(a)), as well as the respective spectrum of the three 
largest Lyapunov exponents (Fig.1(b)), an interesting dynamic 
behavior can be found. 

As the parameter c increases the system passes from 
periodic to hyperchaotic behavior through a crisis [25]. The 
value of c for which this change occurred is equal to 1.099.  
Figure 2 depicts the phase portraits for a periodic (c = 1.02) 
state in two different planes, while in Fig.3 the phase portrait 
and the Poincaré map for hyperchaotic (c = 1.30) state are 
presented. The system’s hyperchaotic behavior is confirmed by 
the calculation of two positive Lyapunov exponents in 
Fig.1(b). 
 
 

 
  (a) 

 
 

 
   (b) 

Fig. 1. (a) Bifurcation diagram and (b) the spectrum of the three 
largest Lyapunov exponents, of system (3), in the first case, when 

varying the value of the bifurcation parameter c from 1 to 1.45 

 

 
 
 
 
 
 
 
 
 
 
 
 

 (a) 
 
 
 
 
 
 
 
 
 
 
 

   (b) 
Fig. 2. Phase portraits, for a = 0.1, b = 0.3, c = 1.02, d = 0.01 and              

x* = 0, in (a) x – y plane and (b) y – z plane 

 
   (a) 

 
 
 
 
 
 
 
 
 
 
 

 
   (b) 

Fig. 3. (a) Phase portrait and (b) Poincaré map, for a = 0.1, b = 0.3,     
c = 1.30, d = 0.01 and x* = 0 
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B. Second Case (x* = 0.01) 
In the second case system’s (3) behavior for *x = 0.01, 

while the rest of parameters are: a = 0.1, b = 0.1,                         
d = 0.01 and the initial conditions (x0, y0, z0, w0) = (1, 0.5, 
0.5, 0.1), is investigated. By taking the bifurcation diagram of 
y versus the parameter c (Fig.4(a)), as well as the respective 
spectrum of the three largest Lyapunov exponents (Fig.4(b)) 
an interesting dynamic behavior can be found. 

As the parameter c decreases the system passes from 
periodic to chaotic behavior through a quasiperiodic region 
[25] and finally to hyperchaotic behavior. The value of c for 
which this change occurred is equal to 1.391. Figure 5 depicts 
the phase portraits for a periodic state (c = 1.40) in two 
different planes, while in Figs. 6 and 7 the phase portraits and 
Poincaré maps, for quasiperiodic (c = 1.34) and hyperchaotic 
(c = 1.16) state respectively, are presented. The system’s 
quasiperiodic behavior is confirmed by the calculation of two 
zero Lyapunov exponents in Fig.4(b). 
 

 
   (a) 

 
 

 
   (b) 

Fig. 4 (a) Bifurcation diagram and (b) the spectrum of the three 
largest Lyapunov exponents, of system (3), in the second case, when 

varying the value of the bifurcation parameter c from 1.15 to 1.45 
 

 
 
 
 
 
 
 
 
 
 

 
 

   (a) 
 
 
 
 
 
 
 
 
 
 
 

   (b) 
Fig. 5 (a) Phase portrait and (b) Poincaré map for a = 0.1, b = 0.1,              

c = 1.40, d = 0.01 and x* = 0.01 

 
   (a) 

 
 
 
 
 
 
 
 
 
 

 
   (b) 

Fig. 6. (a) Phase portrait and (b) Poincaré map for a = 0.1, b = 0.1,                
c = 1.34, d = 0.01 and x* = 0.01 
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(b) 

Fig. 7 (a) Phase portrait and (b) Poincaré map for a = 0.1, b = 0.1,       
c = 1.16, d = 0.01 and x* = 0.01 

 

IV. CONCLUSION 
In this work, the uncovered interest rate parity assumption 

was adopted in a well-known 3D chaotic financial system. The 
new 4D financial model was studied, by using various tools of 
nonlinear theory, such as bifurcation diagram, Lyapunov 
exponents, phase portraits and Poincaré map, in two different 
cases with and without a base interest rate. In the first case, as 
parameter c, which denotes the elasticity of demand of 
commercial markets, increases, the system passes from 
periodic to hyperchaotic behavior through a crisis 
phenomenon. In the second case as parameter c decreases, the 
system passes from periodic to chaotic behavior through a 
quasiperiodic region and finally to hyperchaotic behavior. As a 
future work, the investigation of system’s dynamical behavior 
for other values of parameters, has been planned. 
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